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S u m m a r y  

Faxen's formulas for the drag and torque on a rigid spherical particle immersed in a Stokes flow of a viscous 
incompressible fluid are extended for the case of an incompressible micropolar fluid. 

1. Introduction 

Faxen's laws [1] (see also Brenner [2]) for the drag F, and torque T, exerted on a rigid 
stationary spherical particle of radius a immersed in an arbitrary Stokes flow field, with 
velocity vector u~ = u~(x 1, x 2, x3),  extending to infinity are 

F i = 6 ~ r l ~ a [ ( U i ) o + ~ a Z ( v Z u , ) o ] ,  

T, = 4~r/~a3 [ (~,jk uk.j)0] • 

(1.1) 

(1.2) 

where the subscript zero indicates the evaluation at the centre of the sphere. In this paper, 
these laws are extended for the case of a homogeneous incompressible micropolar fluid. In 
the absence of inertial effects, body forces and body couples, the equations of motion for a 

(1.3) 

(1.4) 

(a .5) 

homogeneous incompressible micropolar fluid are [3], 

Ui, i ~ O, 

(~  + K )u~,jj + KqjkV~. j - -p. ,  = O, 

( a + ~ )Vj , i j  + y v i , j j  + I¢~ijkUk, j --  21¢V i = O. 

Here v, is the micro-rotation vector, p denotes the pressure and/~, x, a, fl, ~, the material 
constants of the micropolar fluid; ~ijk is the alternating tensor. A comma denotes partial 
differentiation and a repeated index implies a summation over the three possible values 1, 
2, 3 of the index. 

The constitutive equations for the stress tensor oij and couple stress tensor rnij are 

o,j = -p,Si j  + I~(ui,j + uj, i) + ~( U , , i -  ci/kvk ), (1.6) 

m~j = avk,k,~j + flY,, s + yvj,i. (1.7) 
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The material constants in (1.3)-(1.7) are restricted by the Clausius-Duhem inequalities 

(2/* + x) >_- 0, ~>_-0, 

(3a +/3 + y)  >/0, "/~ I/~1- (1.8) 

2. The generalized reciprocal theorem 

The reciprocal theorem which was originally given by Brenner [2] for the case of a classical 
viscous fluid has recently been extended by Ramkissoon et al. [4,5] for a micropolar fluid. 
This theorem is recalled here as it is needed in the subsequent derivation. 

Theorem: 
Let (u', v', p', o[j, re;j) and (u", v ' ,p" ,  ei'~, m;'j) represent any two motions of the same 
micropolar fluid which conform to equations (1.3)-(1.7). Let ~f~ be a closed surface 
bounding any fluid volume f~ and u', v', u", v " ~  ~1 in 3f~ + fL Then we have the 
following reciprocal relationship, 

f ~  t 1! t t /  __ ~ 1/ t t t  t 
I "  

(njojkU k + njm#vk )dS - (njo#u k + njmjkvk)dS, 
fl Jo 

(2.1) 

it being assumed that the fields (u~,, v~,) and (u),', vj,') vanish at infinity. 

3. Drag on an arbitrary particle 

Consider the motion of a particle S of any shape in a homogenous incompressible 
micropolar fluid which is at rest at infinity. 

Let (u~,, v~) be the solution of the field equations (1.3)-(1.5) satisfying the boundary 
conditions 

u~, = U[, v~, = 0 on S; (3.1) 

u~ --+ 0, v~, --+ 0 as r --+ oo, (3.2)  

where the constant vector U~ is arbitrary. Further, owing to the linearity of the equations 
of motion and the boundary conditions, the stress tensor ojk and the couple stress tensor 
m)k may be expressed as (see Brenner [6]), 

o,'k = + 

rusk = ( 2 #  + 

(3.3) 

(3.4) 

where Lik e and Mj, e are third-order tensors depending on the shape of the particle. 
Now let (u~', v~,') be any solution of the field equations (1.3)-(1.5) satisfying arbitrary 
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boundary conditions on S and vanishing at infinity. The drag force experienced by the 
particle S due to the field variables (u~,', v[) is 

/ -  
,~t _ | pt 

F;, - Jsn J°jkd S" (3.5) 

The scalar product of Eqn. (3.5) with the vector U[ yields 

F;/U;¢- fs ( . . . . . .  )dS, - -  n j O j k U  k + ~ l j m j k l :  k (3.6) 

by virtue of (3.1). Now the use of the generalized reciprocal theorem (2.1) and the 
relations (3.3) and (3.4) together with the fact that U~ is an arbitrary constant vector gives 

F£' = (2/* + X) fs(njLje, u; + njMjekv}')dS. (3.7) 

The equation (3.7) gives the drag due to the flow field (u},', v'/) which vanishes at infinity. 
To remove this restriction, let (u k, vk) be the solution of field equations (1.3)-(1.5), 
satisfying arbitrary conditions on the surface of the particle and tending to a prescribed 

. . . . .  * then satisfy the Stokes flow (u~, v~) at infinity. The fields u k = u, u~, v k = v k - v  k 
equations (1.3)-(1.5) and vanish at infinity. Since by linearity, F~' = F k - F~ and the field 
(u~, v~) is free from singularities in the interior of the space occupied by the particle and 
cannot produce any force on the particle, it follows that F~' = F k. Therefore 

F k = (2/* + K)fs[n, LH, ( u e -  u~)+ n, M iek(v e -  v}')] dS. (3.8) 

The equation (3.8) gives the drag on the particle which is immersed in an arbitrary Stokes 
flow u* ( e, vT) at infinity and which satisfies arbitrary conditions on the surface S. The drag 

U *  on the particle which is maintained at rest in the flow ( e, v~') is obtained by putting 
Ue= O, vt= 0 in (3.8). Thus, 

Fk = - - (2 .  + + ,jMj,k, )dS. (3.9) 

4. Drag on a sphere 

Consider a spherical particle S of radius a with the origin at the centre of the sphere. 
From the solutions given by Lakshmana Rao et al. [7] for the uniform motion of a sphere, 
we find that 

3(a l+  1)(/, + x) 
njLje* = - 2a[2(~t + x)al + 21.t + •1 8ek' (4.1) 

3 / ¢  

njMjek = 2a[2(# + x ) a l +  2/* + K] Qk"X"'  (4.2) 
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where 

12 = K(2#+ K) 
r ( ~ + ~ )  " 

On using (4.1) and (4.2) in (3.9), we get 

[ Js Js ] e,=2a[2(,+~)al+2,+d ( a l + l ) ( , + ~ )  u~dS-~ , , m , x m ~ d S .  (4.3) 

Now it is easy to show that, for any.vector  functions u i, vi possessing continuous 
derivatives at the origin, the following identities for the surface integrals on the sphere 
hold: 

fsui dS= 4~ra2[(Ui)o a2 a 4 "F ~-I ( V2Ui)0 ÷'~-I ( V4Ui)0 ÷ . . . ] ,  (4.4) 

4 2 fscukxjvkdS=4~.a [.~. (~ijkvk,j) ° 4a2 + 7 F ,  (v~( ' i ,*~* . , ) )o  

6a4 . . . .  ] 
"q---~( V4(l[ijkl'tk.j))o + (4.5) 

The suffix zero indicates that all the functions evaluated at the centre of the sphere. Using 
(4.4) and (4.5) in (4.3) gives the Faxen law for the drag: 

6rra(2/* + K) { [ a 2 
Fk= [2(t,+x)al+ 2#+x] (al+ l)(lt+x) (U~)o+~-.v(V2u~)0 

a 4 [ 2 , 
Jr" ÷ [ ' ~ (  Ckm{P~,m) 0 ~ (V4UZ)0 .-.] -/£42 

+ - -  v ( 'km,~ ,~) )0  +-~-. ,  (V4( '*m'~ .m))0  + . . . .  (4.6t 

This formula reduces to the classical Faxen law (1.1) when the material constant x = 0, 
since 4 , V uk = V6u~ = . . .  -- 0 for a classical viscous fluid. 

Examples 

(i) Uniform flow past a sphere 
The undisturbed Stokes flow field is given by u~ = (U, 0, 0) and P7 = (0, 0, 0), the Faxen 
law (4.6) readily gives 

6¢raU(2# + ,)(al + 1)(/4 + K) 
F1 [2(# + K)a l+  2t* + K] ' (4.7) 

F 2 = F 3 = 0, (4.8) 

which agrees with the result of Lakshmana Rao [7]. 
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(ii) Shear flow past a sphere 
Let the undisturbed flow field be given by u~ = akex t, ~ = ~CkmCaem , 1  then the Faxen law 
(4.6) shows 

F k = (0, 0, 0) (4.9) 

which agrees with the result of Niefer and Kaloni [8]. 

5. Torque on a sphere 

Let (u~, p~) be the solution of the field equations (1.3)-(1.5) satisfying the boundary 
conditions 

U'k = ~kem~OeXm, V'k = eOk on S; (5.1) 

u~ ~ 0, ~ ~ 0 as r ~ ~ ,  (5.2) 

where we and q~k are arbitrary constant vectors. By linearity, the stress tensor oy~, and the 
t couple stress tensor mjk can be written as 

o)' k = (2/* + x)[ ~ k , ~ , +  ~ , ~ ¢ ]  

m~k = (2/Z + ~)[ Qjke~Ol+ Qj*k/Oe] 

(5.3) 

(5.4) 

f" " = mjcn jdS .  

My  = fJemkXmOj'~njdS. 

The torque Ny due to the couple stress m~,is given by 

(5.5) 

(5.6) 

Taking the scalar products of the equations (5.5) and (5.6) with the vectors ~0~ and ,~ 
respectively and adding, we get the following equation by virtue of (5.1) 

" N) ¢0~- fs(OjknjUk + mjknjVk)dS.  (5.7) M)~o¢+ " - " ' " ' 

Now the use of the generalized reciprocal theorem (2.1) gives 

Myo~¢+ N{,'epe= f s  ( oj~,nju~,' + rn;knj~'k')dS. (5.8) 

where Pike, Pj~,e, Qjk¢, Q*ke are third-order tensors depending on the shape of the particle. 
Now, let (u~,', v~') be the solution of the field equations (1.3)-(1.5) satisfying arbitrary 

boundary conditions on the surface of the particle and vanishing at infinity. The torque on 
the particle My due to the stress tensor oj~ is given by 
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On using (5.3) and (5.4) in (5.8), we get 

. . . . .  ( 2 ~ , + ) f s [ ( h  . . . .  M~o¢+ N~,eO e -  K kgnjUk + Qjktnjt'k )*O,, 

+ ( P~enj j u ;  + Qj*kenjl, Z') eO~ dS. (5.9) 

The equation (5.9) is true for any arbitrary constant vectors w e and q~e- Considering the 
case when ~e-  0 and *0 e ~ 0, we have 

" f s  ( " n " M~ = ( 2 # + ~ )  PjkenjUk + Q ik, jl'k)dS" (5.10) 

Similarly the case ~0:--- 0 and 4~e4:0 gives 

, , -  f ( .  ,, . ,, N~ - (2# + x) Pjkenju k + Q ikenjl, k)dS.  (5.11) 

Therefore, the total torque T)' = M)' + Ny is given by 

T;' = (2~ + ~)fs ( A j ~ , . j , ;  + s j~ , . j ~ ' ) dS  (5.12) 

* • * where Ajk¢= Pike+ Pike, Bike = Qjke + Qjke. The equation (5.12) gives the torque due to 
the flow field (u~', p~,') which vanishes at infinity. To remove this restriction, we again 

- " * Then we have (with arguments similar to those used in assume u),' = u k u~,, ~'k = ~'k -- ~'k" 
Section 3): 

Te= (2/~ + x ) fs["JAJ '(uk - uZ) + . j S j k ,  - "Z)] d ,  (5.13) 

The equation (5.13) gives the torque on the particle which is immersed in an arbitrary 
Stokes flow (u~, ~,~) at infinity and which satisfies arbitrary conditions on the surface of 
the particle. The torque on a particle which is maintained at rest in the flow (u~, ~,~) is 
obtained by putting ue= 0, ~,e = 0 in (5.13). Thus, 

Te= - ( 2 #  + ~) fs(njijkeu~, + njBj~ep'~)dS. (5.14) 

Now, from the solution given by Lakshmana Rao et al. ([9], Eqn.48) for the slow steady 
rotation of a sphere, we find that 

3 (5.15) rtjAjk¢= -- -~-'~(t,t q- /£) [ (C 2 "4- 2c + 2 ) a 2 l  2 + c2(1  q- al)] (kgmXm 

where 

D = 2 ( .  + ~ ) (c  ~ + 2~ + 2 ) . ~ t  ~ + ~ ( 2 ~  + ~)(1 + . t )  
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c 2 2x 
a 2 a + / 3 + y "  

Along similar lines it can be shown that the tensor Bjke for the sphere is given by 

njBjk,= - - ~ x ( 1  + al)(cZ + 3c + 3)3k,. (5.16) 

Therefore, the torque on the sphere is given by 

(2/~ + x) { 3 
- - - - i f - - -  a ( / t  + x) [ (c  2 + 2 e +  2)a2l 2 + c2(1 + al)] Tt= 

x fs,,okx uZdS + 2 a x ( 1  q-al ) (c2}  - 3¢"[- 3)fs,¢dS ). ( 5 . 1 7 )  

On using the identities (4.4) and (4.5) in (5.17), we get the Faxen law for the torque on the 
sphere, 

Te-  12~ra3(2/tD + x) ( ( /z+ x) [ (c  2 + 2c + 2)a212 + c2(1 + al)] 

2 , X [-~.(,,mkUk.m)O + 4a2 "-~( V2(fdmkld~,m))O -b "''] 

+-~,(I + al)( c 2 + 3c+ 3) 

[ 0 2 a '  ... ]} 
x (.r)o +-ff (v2.7)o + ~ (v'~7)o + (5.18) 

where the suffix zero indicates that all the functions are evaluated at the centre of the 
sphere. The classical Faxen law (1.2) can be recovered in the limit K --* 0, 7 ~ 0. In this 
case l ~ 0 ,  c ~ 0  as K ~ 0  

(.+~)[(c2+2c+2)a212+c2(l+al)] 1 

1)  --" 2 ' 

x(1 + al)( c 2 + 3c + 3) ~ 0, 
D 

and (5.18) reduces to (1.2), since 2 , _ 4 , _ V (£dmkUk,m)- V (CdmkUk,m)--...= 0 for a classical 
viscous fluid. 
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E x a m p l e s  

1. Sphere  in  a ro t a t i ng  f luid  
The  u n d i s t u r b e d  f low field is g iven  b y  u~ = ( ' 0 ~ x : ,  ~0xl, 0) a n d  p~' = (0, 0, ~0), then  the 

F a x e n  law (5.18) gives 

T 1 = T 2 = 0, (5 .19)  

8'/r6oa3(2p. + x)  {(/.t + X)[(C 2 + 2C + 2 ) a 2 l  2 + C2(1 + al)]  
T 3 =  D 

+K(I + al)(e z + 3c + 3)}. (5.20) 

2. R o t a t i o n a l  shear  at  i n f in i ty  
* = then  F a x e n ' s  law (5.18) T h e  u n d i s t u r b e d  f low field is g iven  by  u k = ak~x e, ~ 1 ~C~mkakm, 

gives 

Te= 4qra3(2p + x)  D ( ( t ~ + x ) [ ( c Z + 2 c + 2 ) a Z 1 2 + c Z ( 1 + a l ) ]  

+ x ( 1  + a l ) ( c  2 + 3c + 3 ) ) , ~ m k a k , , .  (5 .21)  

I f  akm is symmet r ic ,  then  the to rque  becomes  zero, 

T~= (0, 0, 0). (5.22) 
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