Journal of Engineering Mathematics 18 (1984) 23-30
© 1984 Martinus Nijhoff Publishers, The Hague. Printed in The Netherlands

Faxen’s laws for a micropolar fluid
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Summary

Faxen’s formulas for the drag and torque on a rigid spherical particle immersed in a Stokes flow of a viscous
incompressible fluid are extended for the case of an incompressible micropolar fluid.

1. Introduction

Faxen’s laws [1] (see also Brenner [2]) for the drag F, and torque T, exerted on a rigid
stationary spherical particle of radius @ immersed in an arbitrary Stokes flow field, with
velocity vector u; = u,(x;, x5, x;), extending to infinity are

Fi=6”#“[(“f)0+%az(vzui)o]’ (1.1)
T, = dmpa®| (e, )| - (12)

where the subscript zero indicates the evaluation at the centre of the sphere. In this paper,
these laws are extended for the case of a homogeneous incompressible micropolar fluid. In
the absence of inertial effects, body forces and body couples, the equations of motion for a
homogeneous incompressible micropolar fluid are [3],

u;; =0, (1.3)
(P'+")“f,jj+'“ijk”k.j“P,,=O, (1.4)
(a+B)v, ,;+ v, + ke pu,  — 260, =0. (1.5)

Here », is the micro-rotation vector, p denotes the pressure and p, k, a, 3, v the material
constants of the micropolar fluid; ¢, ;, is the alternating tensor. A comma denotes partial
differentiation and a repeated index implies a summation over the three possible values 1,
2, 3 of the index.

The constitutive equations for the stress tensor o, and couple stress tensor m,, are

0;;= _P‘Szj + P‘(ui.j+ uj,i) + K(uj.i - ‘ijk”k)’ (1-6)
m, ;= a”k.k81/+ ,BV,._j+ YV, (1.7)
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The material constants in (1.3)—(1.7) are restricted by the Clausius-Duhem inequalities
(2p+x)>0, k=0,

(Ba+B+y)=20, v=|B] (1.8)

2. The generalized reciprocal theorem

The reciprocal theorem which was originally given by Brenner [2] for the case of a classical
viscous fluid has recently been extended by Ramkissoon et al. [4,5] for a micropolar fluid.
This theorem is recalled here as it is needed in the subsequent derivation.

Theorem:

Let (', v', p’, 0/;, mi;) and (u”, v", p”, o/}, m};) represent any two motions of the same
micropolar fluid which conform to equations (1.3)-(1.7). Let 92 be a closed surface
bounding any fluid volume € and u’, »’, u”, »" € €' in 3Q + Q. Then we have the

following reciprocal relationship,

/;Q(njoj’ku;(’ +n,mv;)dS =/;Q(njoj’,:u,’( +n;mv; )dS, (2.1)

’”

it being assumed that the fields (u,, »;) and (u}, »;’) vanish at infinity.

3. Drag on an arbitrary particle

Consider the motion of a particle S of any shape in a homogenous incompressible
micropolar fluid which is at rest at infinity.
Let (uy, v;) be the solution of the field equations (1.3)-(1.5) satisfying the boundary
conditions
u, = Uy, v, =0 on S; (3.1)
u,—>0, »,>0 asr— oo, (3.2)
where the constant vector U] is arbitrary. Further, owing to the linearity of the equations

of motion and the boundary conditions, the stress tensor o;, and the couple stress tensor
m’, may be expressed as (see Brenner [6]),

O = (2p+ ")ij/U/'s (3.3)
my = (2p+ k) My U;, (3.4)

where L, ,and M, ,are third-order tensors depending on the shape of the particle.
Now let (4}, »}/) be any solution of the field equations (1.3)-(1.5) satisfying arbitrary
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boundary conditions on § and vanishing at infinity. The drag force experienced by the
particle S due to the field variables (u}/, »{) is

F) =fsn,oj'k'ds. (3.5)
The scalar product of Eqn. (3.5) with the vector U] yields
F'U; =j:g( n;oju; + njm}'kv,’()ds, (3.6)

by virtue of (3.1). Now the use of the generalized reciprocal theorem (2.1) and the
relations (3.3) and (3.4) together with the fact that Uy is an arbitrary constant vector gives

Fr=(Qpu+ K)fs(nij,ku'; +n,M,, v/ )dS. (3.7)

1”

The equation (3.7) gives the drag due to the flow field (u}, »;') which vanishes at infinity.
To remove this restriction, let (u,, »,) be the solution of field equations (1.3)-(1.5),
satisfying arbitrary conditions on the surface of the particle and tending to a prescribed
Stokes flow (u}, v¥) at infinity. The fields uy =u, — u}, v/ = v, — v} then satisfy the
equations (1.3)-(1.5) and vanish at infinity. Since by linearity, F;' = F, — F}¥ and the field
(u}, v}) is free from singularities in the interior of the space occupied by the particle and
cannot produce any force on the particle, it follows that F;” = F,. Therefore

F.= (2p+ ")fs[n,‘szk(“t’_ u}) +an/!k(Vl_ v}‘)]dS. (3-8)

The equation (3.8) gives the drag on the particle which is immersed in an arbitrary Stokes
flow (u%, »}) at infinity and which satisfies arbitrary conditions on the surface S. The drag
on the particle which is maintained at rest in the flow (u%, »}) is obtained by putting
u,=0, v,= 0 in (3.8). Thus,

F, = - (2;1 + K)[S( nijzk“’; + anj,kv,*)dS. (3'9)

4. Drag on a sphere

Consider a spherical particle S of radius @ with the origin at the centre of the sphere.
From the solutions given by Lakshmana Rao et al. [7] for the uniform motion of a sphere,
we find that

3(al+1)(p+x)

L, = i 4.1

Mtk 2a[2(p+«)al+ 2p+x] & (4.1)
3«

M., = , 42

T S a(2(p + k) al + 2+ k] K (42)
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where

2= k(2p+ k)
y(p+x) '

On using (4.1) and (4.2) in (3.9), we get

32u+«)
F. =
2a[2(p+«)al + 2u + «]

(al+1)(p+ x)fu,’de - x.[ck,,,/xmv,*dS]. (4.3)
s s

Now it is easy to show that, for any vector functions u,, », possessing continuous
derivatives at the origin, the following identities for the surface integrals on the sphere
hold:

2 4

fu,.dS = 477'a2[(u,-)0 +%(V2ui)0 +a_(v4“i)o T
< ! 5!

: (4.4)

2 44
j;cij'kxjyde = 47"‘14[?!'(‘:‘1/(%,/)0 + 5—!(V2(€ijk"k.j))0

6a*

+T(V4(‘Uk”k.]))o+ e f (4.5)

The suffix zero indicates that all the functions evaluated at the centre of the sphere. Using
(4.4) and (4.5) in (4.3) gives the Faxen law for the drag:

6ma(2u+«)

a2
- [2(p+«)al+ 2p+ k]

F, (uz)o+3!(V2“Z)o

ﬁm+1xu+@

at/ 4,
+§(V uk)0+

2
- Kaz [ﬁ(ckmlvl*,m)o

442 6a*
+S_a!(vz(ckmfyl*,m))o+7a!“(v4(€km/1’;.m))0+

}. (4.6)
This formula reduces to the classical Faxen law (1.1) when the material constant k =0,

since Viu} = vou} =... =0 for a classical viscous fluid.

Examples

(i) Uniform flow past a sphere
The undisturbed Stokes flow field is given by u} = (U, 0, 0) and »} = (0, 0, 0), the Faxen
law (4.6) readily gives

_67aU(2p+«)(al +1)(p+«)
 [2(p+x)al+2p+ k]

(4.7)

1

F,=F,=0, (4.8)

which agrees with the result of Lakshmana Rao [7].
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(i1) Shear flow past a sphere
Let the undisturbed flow field be given by u} = a, ,x,, v} = j€;,,,4,,,, then the Faxen law
(4.6) shows
F.=(0,0,0) (4.9)

which agrees with the result of Niefer and Kaloni [8].

5. Torque on a sphere

Let (u;, v;) be the solution of the field equations (1.3)-(1.5) satisfying the boundary
conditions

Ufe = €1ep @ X s vi=¢, onsS; (5.1)
u,—>0, »;—>0 asr— oo, (5.2)

where w, and ¢, are arbitrary constant vectors. By linearity, the stress tensor o/, and the
couple stress tensor m, can be written as

0 = (2u+ ")[ij(‘*’/'*' Pﬁ(/‘i’/] (5.3)
mi = (2p+ ")[ij/‘*’/“' ka/‘i’/] (5.4)

where P, ,, P% ., Qxe» QFioare third-order tensors depending on the shape of the particle.

Now, let (uy, v;) be the solution of the field equations (1.3)—(1.5) satisfying arbitrary
boundary conditions on the surface of the particle and vanishing at infinity. The torque on
the particle M;" due to the stress tensor g;; is given by

M =fse,,mkxmaj'k'njds. (5.5)

The torque N}’ due to the couple stress m7, is given by
N/ = | m/,ndS. 5.6
£ '/:9 Je€'t ( )

Taking the scalar products of the equations (5.5) and (5.6) with the vectors w, and ¢,
respectively and adding, we get the following equation by virtue of (5.1)

Mo+ N g,= j;(aj'k'nju; +m'jn v, )dS. (5.7)
Now the use of the generalized reciprocal theorem (2.1) gives

MV w,+ Ni'd,= fs(a;knju;; +mnvy)dS. (5.8)
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On using (5.3) and (5.4) in (5.8), we get
Mot Ny ge= 2+ ) [ [(Penud + Quon i)

+(ij/" uy + Q,k/”ﬂ’;(')‘i’JdS- (5.9

The equation (5.9) is true for any arbitrary constant vectors w, and ¢,. Considering the
case when ¢,= 0 and w,+ 0, we have

My =(2p+ ")./;(ijz"j“;{ + Qjuenvi )dS. (5.10)

Similarly the case w,=0 and ¢,+ 0 gives

Ny = (2# + ")./;( k(" uy ijln "k) S. (5-11)
Therefore, the total torque T, = M, + N’ is given by

T”—(2,u+x)f Ayonul + By nv)dS (5.12)

where 4, ,= Py ,+ Pk By,= Qe+ Q. The equation (5.12) gives the torque due to

the flow field (uy, Vk) which vanishes at infinity. To remove this restriction, we again
assume u, = u, — u}, vy, = v, — v;. Then we have (with arguments similar to those used in
Section 3):

=(2u+ x)fs[n,Ajk,(uk —up) +n,By (v, ~vp)|ds. (5.13)

The equation (5.13) gives the torque on the particle which is immersed in an arbitrary
Stokes flow (u}, »}) at infinity and which satisfies arbitrary conditions on the surface of
the particle. The torque on a particle which is maintained at rest in the flow (uf, »}) is
obtained by putting u,= 0, »,= 0 in (5.13). Thus,

T,= —(2u + x)fs(n otih + B wE)dS. (5.14)

Now, from the solution given by Lakshmana Rao et al. ([9], Eqn.48) for the slow steady
rotation of a sphere, we find that

3
nidue=——5(n+ ) (2 +2¢+2)a®® + (1 +al)] ep s % (5.15)
where

D=2(p+k)(c?+2c+2)a**+2(2u+ k)1 +al)
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and

cz__ 2k
s =

a® atB+y’
Along similar lines it can be shown that the tensor B, for the sphere is given by
2a 2
nB,,= ——Ex(l +al)(c*+3c+3)8,,. (5.16)

Therefore, the torque on the sphere is given by

T,=(2—#D+—K—){%(y+ (2 +2¢+2)a*? + (1 + al))

X fse,mkxmu:ds +2ax(1+al)(c? + 3c+ 3)fsv}"dS}. (5.17)

On using the identities (4.4) and (4.5) in (5.17), we get the Faxen law for the torque on the
sphere,

T 127a’(2p+x)

L D {(;14—x)[(c2+2c+2)a212+c2(1+al)]

4q*

2
X ?(fzmk“z.m%*‘ ?( 2(€/mku:.m))0+

+2k(1+al)(c* +3c+3)

><[(v;*)0+33;(v2v;)0+‘;—:(v4v;)0+ ]} (5.18)

where the suffix zero indicates that all the functions are evaluated at the centre of the
sphere. The classical Faxen law (1.2) can be recovered in the limit k = 0, y — 0. In this
case/ > 0,c—>0as k>0

(p+x)[(2+2c+2)a*? + (1 +al)] gt
D 2’

k(1+al)(c?+ 3c+3)
D =0,

and (5.18) reduces to (1.2), since V(€ it )= V*(€,pittt n)="...=0 for a classical
viscous fluid.
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Examples
1. Sphere in a rotating fluid

The undisturbed flow field is given by u} = (—wx,, wx;, 0) and »¥ = (0, 0, w), then the
Faxen law (5.18) gives

T,=T,=0, (5.19)
T, =8—’%@—+—"){(”+ )[(c?+2¢+2)a? + (1 + al)]
+x(1+al)(c?+3c+3)}. (5.20)

2. Rotational shear at infinity
The undisturbed flow field is given by uf = a, ,x,, ¥} = 3€,,,44,,,, then Faxen’s law (5.18)
gives

_ 4ma’(Qp+x)

T, D

{(p+K0)[(c?+2c+2)a?+ (1 +al)]

+(1+al)(c?+3c+3)} €fpipm- (5.21)
If a,,, is symmetric, then the torque becomes zero,

T,= (0,0, 0). (5.22)
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